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ABSTRACT

In this paper, we present a novel framework to characterize the complex spatial structure of the intra-urban
heat island. Cities are known to be warmer than its surrounding areas because of the Urban Heat Island (UHI)
phenomenon. However, due to the diverse and complex spatial geometries of cities themselves, the temperatures
within vary widely. We take advantage of the well-established notion of fractal properties of cities, to characterize
the complex structure of these hotspots. As a demonstrative case study, Land Surface Temperatures (LST) for
Atlanta, GA, derived from Landsat 8 is used. From clustering analysis at multiple thermal thresholds, we
show that the hotspots can be described as a case of percolating clusters. By comparing the area-perimeter
fractal dimension at these thresholds, we find these clusters to be statistically self-similar. Furthermore, at the
percolation threshold, the cluster size distribution is found to follow a power-law size distribution; and at a
higher threshold, deviation from the power law is observed in the form of exponential tempering. We argue
that the spatial distribution of the hotspots itself plays a significant role in the overall UHI and fractal analysis
techniques lend themselves aptly to the characterization of the same. This has several further applications, such
as targeted heat mitigation, assessment of health impacts, and energy load estimation.

–
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1. INTRODUCTION

The Urban Heat Island (UHI) effect, is one of the major challenges of intensive urbanization.1 UHI is the
phenomenon of cities tending to be warmer on an average than their non-urban surroundings. This is due to an
increase in heat sources and a scarcity of thermal sinks.2,3 Furthermore, the UHI interacts synergistically with
mesoscale heat waves to amplify local heat stress.4 As a result, UHI contributes to an increase in ailments such
as energy demand, heat stress, and even heat-related deaths.5 The UHI Intensity is, in practice, quantified as
the difference between average non-urban air temperature and a representative urban air temperature, such as
mean or maximum observed temperature. However, such an approach fails to recognize the spatial heterogeneity
that arises within urban areas due to their form and function.6 To capture the same, in recent times, use of
remotely sensed data has gained popularity.7 While it must be noted that the thermal remote sensors observe
the Land Surface Temperatures (LST). As a result, the difference between urban and rural surface temperatures
are used to characterize the Surface Urban Heat Island (SUHI). But it provides a unique opportunity to capture
the spatial variability of urban temperatures at a higher resolution than the in-situ observations can provide.8

Furthermore, it also offers a consistent suite of observations across cities of the world enabling comparative
studies at a global scale.9,10

The UHI is a result of urban form and function. Urban form, such as excess built-up area and lack of vegetation
results in reduced heat dissipation. The concrete absorbs solar radiation during the day and dissipates it during
the night, resulting in excess heat.2 Moreover, urban functions such as air-conditioning and vehicular emissions
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also contribute to the same. Notable differences in both urban form and functions across different cities act as
an obstacle to the transfer of knowledge across cities and to studies at other spatial scales. However, similar
fundamental properties that have been found across diverse cities can be useful here. Cities exhibit self-similar,
fractal characteristics in terms of physical assets, such as built-up areas, or building density distribution.11–13

Furthermore, urban infrastructure networks, such as roads, water supply and drainage pipes and electricity grids,
also exhibit self-similar scaling.14–16 So do the urban metabolic functions such as mobility, traffic, economy, and
energy use.17–19 Building on the fractal morphology of cities, we hypothesize that the resultant SUHI patterns
exhibit a fractal spatial structure as well. In intra-city studies, the correlation of temperatures and urban
morphology is now well established;6,20–22 however, the scaling properties of intra-urban heat island (referred to
as hotspots in this paper) within cities have not yet been established. As an attempt to bridge that gap, here,
we demonstrate a framework for evaluating self-similarity within SUHIs using remotely sensed LST data.

Figure 1. (a) Satellite image of Atlanta, GA obtained from Google Earth Engine (b) Land Surface Temperature map of
the same on May 6th, 2014 derived from Landsat 8 shows Atlanta’s Surface Urban Heat Island.

2. DATA AND METHODS

2.1 Land Surface Temperature data

As a case study, the city of Atlanta, Georgia, is selected (figure 1a). Atlanta is the capital and the most populous
city of the U.S. state of Georgia with a population of over 5 million people in the metropolitan region. Located
in the humid subtropical climate zone (cfa) according to the Koppen Geiger climate classification,23 Atlanta is
often affected by extreme heat, due to both UHI,24 and recurrent heat waves.25 As a result, numerous studies
have focused on understanding and better characterizing Atlanta’s UHI patterns.24–26 Land surface temperature
(LST) data from Landsat 8 (at 90 m resolution) for the city was derived using Google Earth Engine for a
cloud-free day of May27,28 (figure 1b). Methods developed here also enable comparing cities across the world
minimizing the difficulties of maintaining uniformity of data quality.

2.2 Spatial metrics for fractal surfaces

The UHI is an island of higher urban temperatures in a background of lower non-urban temperatures. As
an extension of the same analogy, we conceptualize the LST map as a Digital Elevation Model (DEM) of
temperatures. We estimated temperature percentiles, above several thermal thresholds to form clusters of areas
hotter than the threshold (as illustrated in figure 2). The identified clusters comprised a set of connected pixels
whose temperatures were above the selected threshold (figure 3a). A Moore neighborhood (including diagonals)
was chosen for defining adjacencies among pixels. Characterization of scaling properties of topographical surfaces
(such as a DEM) as iso-lines has a long history in the field of percolation theory, which is a canonical branch
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Figure 2. Illustrated above is an example of thresholding by percentile. The thermal maps are represented as 3-d elevation
maps where height, as well as color, corresponds to a higher temperature. For each percentile of the thermal threshold,
the areas above that are selected, and connected pixels (by Moore neighborhood) are grouped into a cluster. Figures (a-i)
show the clusters that emerge above 9 incremental percentiles (shown as p).

of statistical physics that focuses on connected clusters.29,30 We utilize two tools to test for self-similarity:
Area-Perimeter Fractal Dimension of heat clusters and their Size-Distribution.

Area-Perimeter Fractal Dimension (D) is estimated as the exponent of power-law relationships between the

cluster area (A) and perimeter (P) via the relationship P ∝ AD
2 .31 Note that for a system of clusters, the aggre-

gated area-perimeter is used. Isichenko (1992) established that the fractal dimension of a set of topographical
iso-lines for a variety of fractal landscapes lies between 1 and 1.75 depending on roughness. Within this, for
random site percolation, a D of 1.33 (4/3) is expected of a system of uncorrelated clusters and values above that
as spatial correlation increases.32,33

For fractal iso-lines, the cluster areas follow a probability distribution with a power-law tail.32,34 This was first
presented as an empirical rule by physicist and geographer Jaromir Korcak, who suggested a general scaling law
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describing the size-distribution of various geographical objects, including lakes and islands.35 In summary, this
law is expressed as the relative number of islands with an area equal to a is given by the power-law: N(a) ∝ a(−β).
Multiple studies have reported the occurrence of such scaling in natural topography such as islands,31 lakes,36

where the respective size distributions are well described by a power-law tail. In hydrology, the area exceedance
for flow accumulation is a well-established signature of self-organization.37 Above the percolation threshold,
deviations from the power-law result in some form of tempering. We define the percolation threshold as the
temperature at which the number of clusters is maximum. Scaling of the hotspot areas was examined using the
exceedance probability distributions, at the percolation threshold and at regular quantiles of temperature above
that threshold. Power-law tails were fit to the resultant distributions using a combination of maximum-likelihood
fitting methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic and likelihood ratios.38

Figure 3. (a) Clusters of high heat (hotspots) above the percolation threshold (31◦C) as indicated in red. (b) Size of the
biggest hotspot is shown as a percentage of total domain area (c) Number of hotspots is shown for each thermal threshold.
In (b) and (c), red vertical lines correspond to 50th, 60th, 70th, 80th, and 90th percentiles respectively. Note that the
maximum number of clusters is obtained at the 70th percentile.

3. RESULTS AND DISCUSSIONS

3.1 Fractal dimension

For multiple percentiles of thermal thresholds (50th, 60th, 70th, 80th, 90th, and 95th), net hotspot areas and
perimeters are calculated. Assuming the limiting case of a circular cluster to calculate the proportionality
constant, the following equation is used to estimate D:

ΣP = 0.55 · ΣAD
2 (1)

D is found to be the same for all thresholds tested (figure 4a). This demonstrates statistical self-similarity
within each thermal landscape and shows empirically that SUHI has a fractal topography. The fractal dimension
is a measure of compactness or sprawl of the thermal hotspots as a whole. Smaller D values indicate that the
hotspots are clumped together, possibly even resulting in a single dominant cluster, while larger values suggest
a more heterogeneous spread of hotspots (sources) surrounded by cooler regions (sinks). Comparing the D
value reported for other aspects of urban form and function, we find the correlation between morphology and
temperature to emerge clearly. For instance, Makse et al (1998) reported the fractal dimension of modeled
urban clusters to fall within 1.2 to 1.4, with a value of 1.38 indicating the presence of spatial correlations across
percolation clusters.13 Therefore, correlated percolation could be a more suitable model for thermal clusters.
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Figure 4. (a) Scatter plot of the aggregated perimeters of the hotspots versus their aggregated areas for 60, 70, 80, 90, and
95th percentiles respectively (from left to right). The fractal dimension (D) is the slope of the line between each point
in this graph and a constant intercept k=0.55 that is calculated for a circular cluster. The grey, dashed line indicates
the calculated D = 1.38. Additionally, the fractal dimensions of the perimeter of a circle (D =1) and a space-filling line
(D =2) are plotted to show the physical bounds to indicate that the temperature clusters have fractal perimeters. (b)
Hotspot size distribution in the form of exceedance probability plots at the percolation threshold (in blue) and higher.
Choice of axes is log-log to demonstrate the power-law tail behavior (Slope = 2.06). The vertical dashed line is the start
of the power-law tail as estimated using algorithms from Clauset et al (2009).

3.2 Hotspot size distribution

At first when the thermal threshold increases, the total number of hotspots increase as the biggest connected
cluster disintegrates into its constituents (figure 3b). However, after the percolation threshold, any further
increase in the threshold causes a net reduction in the total number of hotspots as well as their respective areas
(figure 3c). At the percolation threshold, i.e. 70th percentile, in this case, the hotspot size distribution (figure
4b) is found to be consistent with a power-law tail scaling as:

P (A ≥ a) ∝ a−(β−1),∀a ≥ amin (2)

Alternative distributions, such as log-normal, exponential and Weibull, were tested as potential candidates;
however, they were all rejected (at p ≥ 0.1). On the other hand, Kolmogorov-Smirnoff statistics suggested that
the distributions could not be rejected as a power-law tailed distribution with the exponent β = 2.06 (at p ≤ 0.1).
This is another salient finding of our analysis. Empirical distributions of land classified as urban39 and simulated
cities modeled with correlated percolation13 have also found β ∼ 2. For several other systems including: cities;40

lakes;36 and islands;31 the exponent has been reported to be ∼ 2 as well.

Among reasons for frontal truncation of power-law in real fractal systems is the limitation of resolution.
Moreover, in this case, the lower bound (xmin at which the power-law tail starts) is about 300 m (figure 4b);
which corresponds to the size of an urban block that is the building block of a city. On the other hand, the
distribution cannot follow a power-law to arbitrarily large cluster sizes since the area of a cluster can be no
bigger than the area of the whole lattice. So the tail of the power-law distribution is truncated, an example
of a finite-size effect.41 As the temperature threshold increases, as the number of hotspots for any given size
decreases, the exceedance probability plot shifts to the left (figure 4b). This deviation from the power-law can
be modeled as an exponential tempering (equation 3).

P (A ≥ a) ∝ a−(β−1) · e−c·a,∀a ≥ amin (3)
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4. SUMMARY

In summary, a framework for characterization of intra-city SUHI is presented using metrics such as area-perimeter
Fractal Dimension (D) and slope of hotspot size distribution (β) at the percolation threshold. Previous studies
have shown that the fractal behavior in urban dynamics can be attributed to Diffusion-Limited Aggregation
(DLA).13,42 Our understanding is that the fractal behavior in SUHI is a direct extension of this. As the
city grows, urban infrastructures evolve through expansion and densification as parallel processes, involving
partial preferential settlement.18 Such evolution results in an aggregation of heat sources and contributes to the
emergence of hotspots.

Moreover, both the fractal dimension as well as scaling exponent estimated here are consistent with that of
urban form simulated as a correlated percolation.13 Such growth patterns are constrained not only by city size
but other constraints, including engineering design and socio-economic factors, are manifested as an exponential
tempering of the power-law tails. We observe similar tempering emerge above the percolation threshold. Further
research on the temporal analysis of intra-urban hotspots focusing on diurnal, seasonal, or decadal variability
is also necessary to examine if these spatial patterns are persistent, recurrent and whether there are consistent
patterns as cities grow.

Lastly, our analysis here uses Land Surface Temperature as an input. However, a heat-stress vulnerability of
urban communities requires the joint consideration of air temperature and humidity.43 Air temperatures show
moderate to good correlations with LST depending upon the land use,44 but local weather patterns and mixing in
the atmospheric boundary layer will likely modify the scaling exponents between cities. As we have demonstrated
that a suite of fractal analysis tools lend themselves aptly to the characterization of spatial complexities SUHI,
the same can be done for intra-urban heat stress characterization for improved assessment of urban and ecological
heat-related impacts.
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